Adaptive Tetrahedral Meshing for Personalized Cardiac Simulations
نویسندگان
چکیده
Personalized simulation for therapy planning in the clinical routine requires fast and accurate computations. Finite-element (FE) simulations belong to the most commonly used approaches. Based on medical images the geometry of the patient’s anatomy must be faithfully represented and discretized in a way to find a reasonable compromise between accuracy and speed. This can be achieved by adapting the mesh resolution, and by providing well-shaped elements to improve the convergence of iterative solvers. We present a pipeline for generating high-quality, adaptive meshes, and show how the framework can be applied to specific cardiac simulations. Our aim is to analyze the meshing requirements for applications in electrophysiological modeling of ventricular tachycardia and electromechanical modeling of Tetralogy of Fallot.
منابع مشابه
Finite Element Meshing for Cardiac Analysis∗
This application paper presents details of the technique we developed to produce an adaptive and quality tetrahedral finite element mesh model of a human heart. Beginning from a polygonal surface model consisting of twenty-two components, we first edit and convert it to volumetric gridded data. A component index for each cell edge and grid point is computed for assisting the boundary and materi...
متن کاملAdaptive and Unstructured Mesh Cleaving
We propose a new strategy for boundary conforming meshing that decouples the problem of building tetrahedra of proper size and shape from the problem of conforming to complex, non-manifold boundaries. This approach is motivated by the observation that while several methods exist for adaptive tetrahedral meshing, they typically have difficulty at geometric boundaries. The proposed strategy avoid...
متن کاملTowards tetrahedral meshing with decoupled element and boundary constraints
In tetrahedral mesh generation, the constraints imposed by adaptive element size, good tetrahedral quality (shape measured by some local metric), and material boundaries are often in conflict. Attempts to satisfy these conditions simultaneously frustrate many conventional approaches. We propose a new strategy for boundary conforming meshing that decouples the problem of building tetrahedra of p...
متن کامل3 D finite element meshing from imaging data q
This paper describes an algorithm to extract adaptive and quality 3D meshes directly from volumetric imaging data. The extracted tetrahedral and hexahedral meshes are extensively used in the finite element method (FEM). A top-down octree subdivision coupled with a dual contouring method is used to rapidly extract adaptive 3D finite element meshes with correct topology from volumetric imaging da...
متن کامل3D Finite Element Meshing from Imaging Data.
This paper describes an algorithm to extract adaptive and quality 3D meshes directly from volumetric imaging data. The extracted tetrahedral and hexahedral meshes are extensively used in the Finite Element Method (FEM). A top-down octree subdivision coupled with the dual contouring method is used to rapidly extract adaptive 3D finite element meshes with correct topology from volumetric imaging ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009